Cantonese Automatic Speech Recognition Using Transfer Learning

Bryan Li¹, Xinyue Cindy Wang¹, Homayoon Beigi^{1,2} Columbia University¹, NY, Recognition Technologies, Inc.², NY | [bl2557, xw2368]@columbia.edu, beigi@recotechnologies.com

We propose a system for automatic speech recognition (ASR) of Cantonese through transfer learning from Mandarin. We take a time-delayed neural network trained on Mandarin, and perform weight transfer of several layers to a newly initialized model for Cantonese. Key findings are that this approach allows for quicker training time with less data. We find that for every epoch, log-probability is higher for our best transfer learning model compared to a Cantonese-only model. The Cantonese ASR results for transfer-learned models show slight improvement in CER. We also discuss our ongoing work in further improving results.

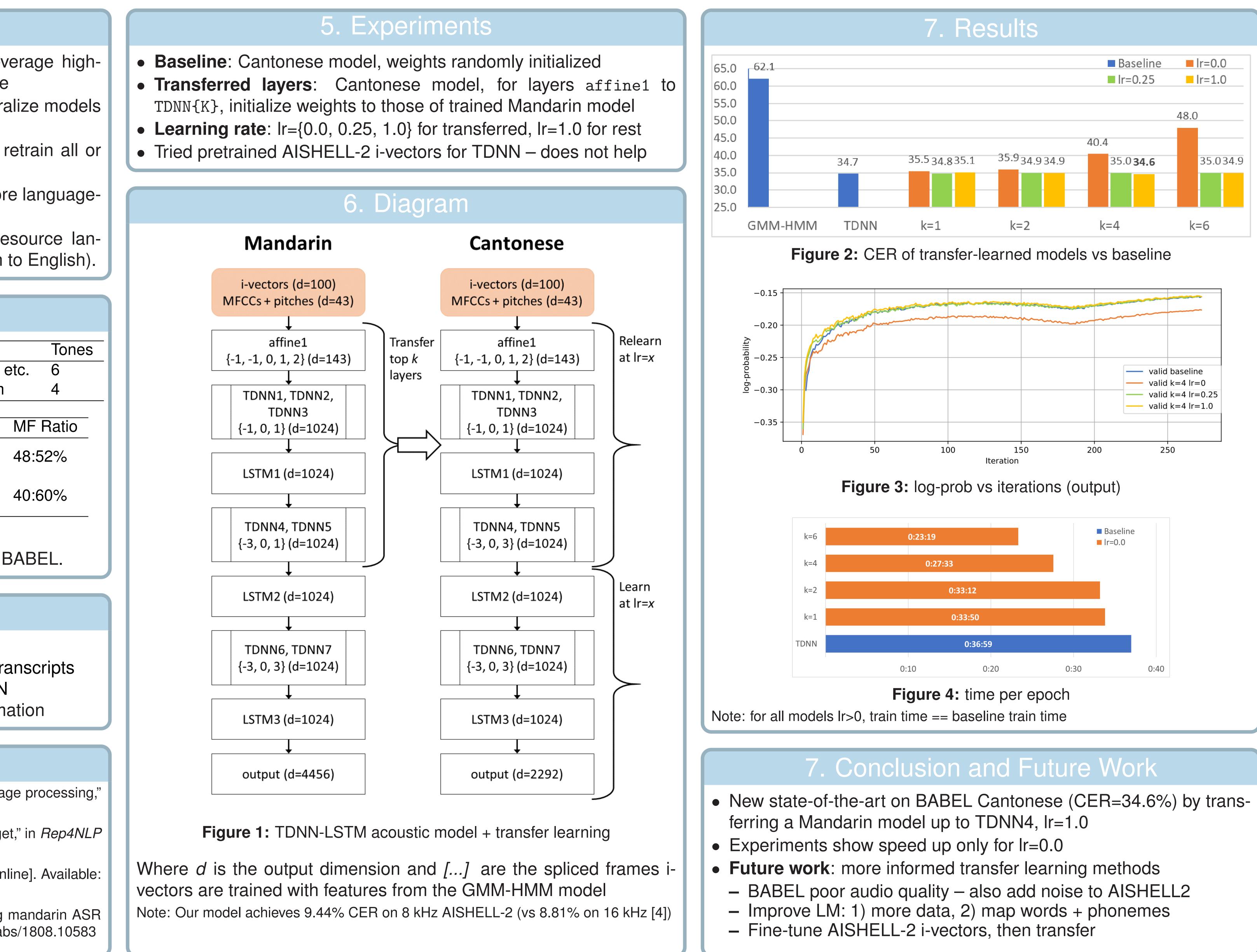
2. Background and Motivation

- Motivation: features are shared (MFCCs, pitch), leverage highquality, larger volume data in a high-resource language
- **Transfer learning**: machine learning method to generalize models trained on one task to another
- Model adaptation: train a model on one language, retrain all or parts of it on a different one
- Key idea: features learned by neural networks are more languageindependent in earlier layers than in later layers [1].
- Prior Work [2]: transfer learning effective for low-resource languages, especially between related pairs (e.g German to English).

	3. Datasets			
Dataset	Language	e Le	ength	Environments
BABEL [3]	Cantones	e 21	15 hrs	home, street, car,
AISHELL-2 [4]	Mandarin	10)00 hrs	studio, living room
Dataset	Speakers	Ages	з Тор	ics
BABEL	952	16-6	₇ con	versational (used),
		10-0	' scri	pted (unused)
AISHELL-2	1991	11-40	n voic	e control, news,
			spo	rts, etc.

 Table 1: Dataset statistics

We downsampled AISHELL-2 16 kHz \rightarrow 8 kHz to match BABEL.


4. Model Architecture

Implemented in **Kaldi** following fairly standard pipeline Language model: 4-gram statistical model, trained on transcripts Acoustic model: two-stage model, GMM-HMM \rightarrow TDNN • Objective function: lattice-free maximum mutual information

Selected References

- [1] D. Wang and T. F. Zheng, "Transfer learning for speech and language processing," in APSIPA 2015, Dec. 2015.
- [2] J. Kunze *et al.*, "Transfer learning for speech recognition on a budget," in *Rep4NLP* Workshop at ACL 2017.
- [3] T. Andrus et al. (2016) IARPA babel cantonese language pack. [Online]. Available: https://catalog.ldc.upenn.edu/LDC2016S02
- [4] J. Du, X. Na, X. Liu, and H. Bu. (2018) AISHELL-2: Transforming mandarin ASR research into industrial scale. [Online]. Available: https://arxiv.org/abs/1808.10583

1. Introduction

