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ABSTRACT

When control systems are given the same task to perform repeatedly, they will usually repeat the
same errors in executing the command, except for centain random noise effects. The field of learning
control has developed to produce controllers that i ir performance at a given task with
each repetition of the task. To date, learning control algorithms have concentrated on use of
analogues of integral control to eliminate errors, and recent]

Om one repetition to the next.
ative free algorithms and the

are studied. It is shown analytically that the generalized secant method
converges to zero trackin i i i inimi
of the Euclidean norm of

nonlinear systems that incl

L INTRODUCTION

A large percentage of the practical applications of control theory involve systems which are
repeatedly asked to perform the same task. Examples include tracking problems for robots on
assembly lines, as well as a large number of manufacturing applications. Standard controller design
methods produce Systems that do an imperfect job of executing a command -- and when the
command is repeated the System repeats these same errors everytime. Itis perhaps a bit primitive to
persist in repeating the same errors. And in the last few years a theory of learning control has been
developed in the literature, generating controllers that can learn from previous experience at

performing a specific task, see for example [1-7]. The fact that a specific task is involved repeatedly,
disti problem from the adaptive control problem.

nguishes the learnin g control

To date, the learning control literature has been based on either anal
ICpetition domain [1-4], or more recently adaptive control ideas have been converted to apply to the
caming control problem jn [5-7]. This paper is devoted to a preliminary investigation of a third
OPtion - the yge of numerical optimization techniques as a method of accomplishing learning in
Tepetitive tagks,

ogues of integral control in the

;r};he approach bears 3 certain philosophical similarity to a few optimal control investigations that use
e rea! world rather than ac

t Omputer model 1o evaluate each iteration in the attempt to converge on
© Optimal control, Sych an approach can avoid the sometimes lengthy process of obtaining a good
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can start. Reference (3] develops such an ide

. ation problem i 3
el crror in continuous systems.

lute value of the

ontrol problem for discrete systems, a system of linear 4
dl' a

f the system to the change in the control actiop fi Bebraic
rom one

model before the optin a for Minimig;,
the integral of the abso g
Here, we consider Il1hc }Cafig‘::"i%‘ ihc v g
i’ ating the chan : 4 " : !
cquations rufl;'lﬁc E‘.ﬁk {0 another, From this sel (_)flmcar equations which gives the transition
repetition oc[itio;lg w an optimization function which is quadratic in the error, Wy
any two T;‘g imization methods 10 determine how to adjust the control h15['0-,-y from one repcﬁc'sm
nmun:::cllﬁn or;dcr 10 decrease this quadratic function of the error as the repetitions of the task prot::(é:cio
c ‘ .
Furthermore, We utilize a gcneralizcd secant method to solve L_hc system of linear algebraic
diurccﬂy for the appropriatc control action ar}d parameter estimates that will minimize the tracki
error of the controlled dynamic syster without any prior knowledge of the system parame[mg
cept the order of the system. It is shown analytically that the gcnerahged secant method re ters
excep to converge among all the methods given in this paper Hq:;::;cs
. c.

Jeast number of repetitions TEe .
ts}ilrfwlations were conducted to study pracncal issues of this controller.

1. PROBLEM FORMULATION

cqua[i()ns

Consider a general discrete-time linear time-varying or time-invariant system,

Kol = AQ O +BOUO + w0 (1a)

yk(t+1)=C(t+])xk(t+l) (20,1, 2 wpl k=012 . (1b)

ensional, the control, 1, is m-dimensional, the output,y, is g-dimensional
(g2m), t is the time step in the p-step repetitive operation, and k is the repetition number. For
simplicity, the dimension n of the system is assumed known, but generalization to just knowing an
upper bound on n is easily considered. Also, A, B, C, and wk are assumed unknown -- otherwise
one could determine in advance what control to use to minimize tracking error, and there would be
no need for learning control. In the Jearning control problem (as contrasted with the repetitive control
problem in [2]) the system is assumed to always start from the same initial state in each repetition of
the task. Matrix A includes any stat€ or output feedback control present in the system and the
symbol u* is reserved for the signal added to the control for learning purposes. A time varying
model is considered because many applications, such as in robotics, involve nonlinear dynamic
systems which when linearized produce linear models with coefficients that vary with time, and vary

in the same manner each repetition. In such repetitive operations it is often the case that there will be
50

disturbances wX(t) that repeat with each repetition of the task, and learning can be made to al
lves to repetitive wk(D).

correct for this source of errors in a natural way. We will limit ourse

Therefore the superscript k will be dropped. One of the purposes of the feedback control is 10 handle
any non-repetitive disturbances, and these will be ignored for purposes of designing the learning
control (some analysis of these random noise effects in learning control can be found in [4])-

where the state, X, is n-dim

The solution to (1) for the p-steps of the repetitive process can be written as

S L 1
D) = (1;[/\0) Y+ Y, (JTao)@o o +w M) @
] 30 5+l

it is larger than the upper

where the product symbol is taken to give the identity matrix if the lower lin
k(1) - 220 or

limit. L’el p be the total number of time steps. Defining a difference operator Sxz() =
any variable z, and using the fact that xK(0) and w(1) are repetitive, one can write,

k
y'=y +P8u 3

where,

YR =[y¥T(1) y¥T2) ... yKT(p)]T

uk = [ukT(0) ukT(1) ... ukT(p-1)]T
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C(1)B(0) 0 o 0
C(2)A(1)B(0) C(2)B(1) 0
P=
objective is to find a change in the cont 1es
gr?imiic the quadratic error function mretatedch repetition k that will, as k progresses

k T
f(3,u)=(y -yp) (yk-yD) @)

where yp is the desired output history for the p-step pri )

y dis_crctc systcms.[4-7], s well as in the };xmr];iy)orc:;:cs?.t;:sgre?ous worls on lcaming control
attention had to be directed to the problem of ensuring that the Spcciapl ge{s for journal publication,
feasible trajectory for the system to perform. For example, one Csmad trajectory was in fact a
knowledge of an upper bound on the system dimension n, and a|squminme[h od involved assuming
Then specifying the desired measured output variable history cvc}y n S[g s Do s con Eolsble.
Fontro} theory to be a feasible specification. In the present approach th €ps 1s guaranteed by modern
if one is satisfied with minimizing (4) rather than insisting that (4) be d;j:ncg]mziéuons can be relaxed

ro.

Substitute (3) into (4),
0 T
FE0=(y +P8u-yp) (v +P8u-yp)

T T T T 2
=8u (P P)du+28u (P (yo-yD)I+(y0-yD)T(y°-yD) .

Note that the gradient of this objective function and the Hessian matrix of second partials are
& 2 PT Pd 2 PT 0 |
—_— u+ -
TG K (y -¥p) (6)

2
<l 2 -ZPTP
d(su)| @

It is now possible t i ; P
p o characterize the nonlinear optimization problem represented b i
control objective. We wish to P P p ed by our learning

1. minimize a function which is known to be quadratic in the control change variable &,u,
but the first c}crivativc of this function is not directly available, because we do not know the
system matrices A, B, C, and hence do not know P,

3. and the second derivative is similarly unavailable.

erview and assessments of the possible

Having characterized the problem, we present an ov
1 optimizing method.

approaches to the learning control problem using numerica
IIL. LEARNING CONTROL BY NUMERICAL OPTIMIZATION METHODS

3.1 Quasi-Newton Methods
Over the last cou ; - hods have been
ple of decades various finely tuned quasi-newton based methods ha
fe"lfratcd for the minimization of unconstrained nonlinear functions. Among these methods are mﬁ
a"s 1 Broyden method, DFP, BFGS, and other members of the Broyden family of methods as e
:s SVM methods. An important characteristic of these methods is the use of the iterative pm(;:ejs IIC;
pproximate the Hessian matrix so that nc explicit expression for the second derivatve 1S needed.
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we could evaluate the first derivative df/d(8,u), then the BFGS method woy)y con
optimal 8,u in approximately mp repetitions. One might note that if one Actually kng,e :‘:r
¢

of (6), then one could equate it to zero and solve for 8u and obtain the Optimal §,, ; f/dr&‘u)

something which could be classified as a Newton method in numerical Optimization N ope Step .

Since we do not know dtj/d(ﬁ-ku), one can con_s:dm.' the use of Quasi-Newmn Mme
approximation of the gradient obtained by a ﬁmtg dlffcrcncq method, In order 1o ; ogis With
differences for all of the mp elements of the gradient vector it would require appro Obtain theg,
repetitions of the task to make one cvaluanonzof thc' gradient vector. The 1o13] Number :f’_matcly_
required for convergence would c;cced (mp)4. This n:1:1ke§ SUth methods a poor choj TePetitions
control. Methods that do not require t.he_use of a gradient in picking the search direq.cﬂ in ]Cilrning
for. Note that the same difficulty eliminates the use of steepest descent and cgn.ulon are ¢a]jeg
methods. JUgate gragiep,

3.2 A Direct Search Method

A method which does not require knowledge of gradients, is the direct search method of optim;y:
as expressed by Wood (9] and later by Hooke and Jeeves [10]. The direct search mcul]JOdmnzaq(m
takes advantage of the quadratic nature of the objective function, is as follows: » Which

1. Pick mp orthogonal directions in the 8,u space. For each of thes

e directions in syuccesg;
; g ces
perform the line search as in the next steps. sion,

2. Take a step along the chosen direction in §,u space, and apply the resulting conro] inth
next repetition. Evaluate f from the data of this repetition. ¢

3. Iffdecreased pick another step in the same direction, if it increased pick astep in
the opposite direction, and apply to the system.

4. Since the quadratic objective function surface in the plane of the chosen direction is 2
parabola, the data from 2 and 3 determines this parabola, and can be used 1o

find the minimizing 8,u for this direction. This completes the line search,
5. Return to 2 with the next direction.

This algorithm will improve the tracking every three repetitions, provided there is no noise in the
measurements. There is no guarantee for a finite convergence unless the directions of search are
mutually conjugate about the Hessian matrix of the quadratic objective function. Care must be taken
10 avoid large disturbances to the repetitive process durin g the line search.

3.3 Conjugate Direction Methods

If the unidimensional search of the last section were used along mp mutually conjugate directions,
then in the absence of noise, the system would converge after minimizing the quadratic objective
function in all these directions. There are a few conjugate direction methods available in the literature
[11-13]. These methods start with a set of mp orthonormal directions which could be coincident with
the columns of an mpxmp identity matrix. Then, by doing unidimensional searches in these
directions, a new set of directions is generated.

Rosenbrock’s [11] method provides a direction coincident with one of the eigenvectors of the
Hessian (H) marrix. Eigenvectors of H are mutually conjugate and point in the direction of the
minimum of the quadratic objective function. One such eigenvector is reached after mg
unidimensional searches along the orthonormal directions. The rest of the mp-1 directions are fou_gc
by using the Gram-Schmidt [ 14] orthogonalization procedure. This cycle is then repeated 10 pmf\gm
another eigenvector of H. There is no guarantee that the eigenvectors are not repeated. Therefore,
there is no general finite convergence proof available.

the method breaks
od due to Davies:
f search. Another

Rosenbrock's method might converge 10 a non-minimum point in which case
down. To avoid or delay the failure of the minimization procedure, lhe'mclh
Swann, and Campey [12] (DSC) uses a renumbering system for the directions 0 < oate to the
method due to Powell [13] provides a direction set with one of the directions coﬂJugamck and
complementary mp-1 directions. This set is obtained after a cycle similar to that of Roscnﬂer T
DSC. Ho_we.ver. Powell's method does not require any orthogonalization procedure 2

cycle and it never breaks down as Rosenbrock and DSC methods do.
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¢ methods guarantees a finite convergence since

¢ abov jependent on directions obtained in previou

the main direcy
of the direction after each cycla
Nof® "y lincarly ¢CI

s cycles. However, if the

: the function minimizat i el set of
Tinear] uulcpcmlcm,' then ation will converge wi
g;"-'c‘ Hons an‘i':;inscﬂmﬁics to Powell's second method. 8¢ within mp(2mp+1)
jtions.
repet!

AR mmliﬁcn(ion Test Method
34 ¢ : :
sible to identify a system fr_om 1mpu'lsc response tests. In this sectio
i;l and then in the next section we will study how to accom s

SH , plish improv i
usehofesp‘ggi:;_ If data is taken for a sequence of repetitions (G=0,1,2,... N) then eq.Iz3) ;?:S"[ with
eac

[SNY ON-1Y - 81y] =IP [SNU Ot .. 6111] €))

N is sufficiently large, this can be solved for P by use of an inverse or
e i lumn of the identity matrix, which j
makes each 8;u a different colum y x, which is

o lse response test, then one can _climinatc the need for inver'ting a matrix. In other cases, one can
impu 3 vantage of the lower block triangular nature of P to efficiently compute the inverse. The noise
{asglacan be important in deciding the best approach. Once P is determined, then solving (6) gives

e

Juis always PO

pseudo-inverse. If one
the discrete equivalent of an

8j+1 u= PT (yo - YD) (9)
where the superscript T indicates the Moore-Penrose pseudoinverse.

the case that the desired trajectory is feasible for system 1, and the desired trajectory exactly
i;eciﬁcs all the freedom in the system, then the solution to (9) is the same as solving (3) for v. to

obtain v; = P (¥ - yp). This approach requires mp+1 steps to optimize the tracking in the no noise
i
case.

A Modification to Obtain Improvement Each Repetition: In practice one usually has a model of

the system, call it P™, when one starts the repetitive control, although one may not be very confident
about the model. As the data from each repetition arrives one could modify the model to match the
data, using the smallest possible change in the elements in the least squares sense. At step j, one
would choose AP to satisfy

[Sjy i1y .. 81y] = [Pm +A P] [Bju Jj-1u ... 51u]

or

T
AP = { [Sjy aj—ly 51y] -p" [8ju j-10 ... Slu] } [Sju 5j-1u 51u] (10)

where the superscript T indicates the Moore-Penrose pseudoinverse. One canfsallilo v; ::;t;héi
pseudoinverse will minimize tr(APTAP), i.e. the sum of the squares of the changes of all ele
AP,

The method becomes:

1. Pick a direction for 8,u and make the first repetition to obtain the 8,y, 5,u pair.
2. Solve for AP from (10). _ o of
3. Obtain § j+1 from (9) substituting P™ + AP for P. The singular value decomposition o

. R
[8;47u ... 8;u] involved in the pseudo-inverse will determine ldeJ;tlgilrig?gr?a{mis .
independent. In the event that it is not, c_:hoosc_a linearly independe

4. Repeat steps 2 and 3 until convergence is obtained.

bout the system, improves the control

. o bopch takes full adyapiago of a priori information = tural way that smooths its influence,

System behavior wj ition, handles noise in a na : he system to
andles in g IOEiCE:l“;nca‘:Slrgrrseg:gttllcd desired trajectories that are not fcaSlgll';‘Of]osr :)r lcgs. The
Perform, and in the no noise case produces convergence in mp+1 reI?efundamenmlly related
ffectiveness of the method by comparison to the direction set method above ‘sther the linear and the
the fact thag the quadratic cost (5) is not a general quadratic function, but ra
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‘ TP are related, and this extra information has been i
ents PTand P refale ; 45 been i
et h ying 10 N he GUAC S o g X
lation (3) from which the quadratic is (lcr]vcd is 1dcnrificd' With 4 rcuon_sc,
‘A numerical optimization method with this same property is prcscm:d“.’ ting
: i

n lhc

quadratic matnx .(‘nCﬂ-I
in the new al Eonlhm.
method, the linear rc
savings in repetitions.
next section.

g s identification of the system model in the repetition domp; :

. y hod involves identific ki b % A AN, wh;j
The n??:sll:%ing control can be called learning identification. Various approaches to identiﬁc?:' :
51ml‘llmcf?‘l}:cPlcliti‘nn domain are presented in [7,15,16], for both time-varying and tme-invarian Catcsm
m AL N

i il . an accelerate the learning control convergence b

system is time-invariant one ¢ : ' g o gence by
":;r p,ﬁ?r:?:lign of elements of P to compute the time domain description A, B, C, from Whis
lcocinp]ct‘c the clements of P before enough data has been taken to obtain al] elements dire
algorithm is as follows:

using the
h one can

ctly. The

1. While applying the above algorithm, use the lower block trangular nature of Pto determing
successively CB, CAB, CA?B, ctc.

2. Form the Hankel matrix of these Markov parameters for the appropriate dimen
knows the order n of the system, for any repetition number large enough to have
Later repetitions allow more smoothing. If n is not known, monitor the rank o
with repetitions,

sion, if one
generated C,'\ln-lB‘
f the Hanke] matrix

3. Use the Eigensystem Realization Algorithm (see for example [17], or use th

] l ¢ Ho Kalmap
algorithm) to obtain A, B, and C. Note that one does not need to identify w(t) of the time domain
model.

4. Use A, B, and C to construct the full P matrix.
5. Find the optimizing control using this in (9).
Note that if the full state is measured, then the Eigensystem Realization Al

by simply identifying A and B using a pseudoinverse solution of the
succeeding steps, after eliminating w(t) through dif] ferencing,

gorithm can be bypassed,
sequence of eq. (1) for
IV. THE GENERALIZED SECANT METHOD

Define the error, ek, as the difference between the output y and the desired trajectory yp,

ko k
=y -y, (1)
Define the change of input between two consecutive repetitions as
k k+l &
vV=uo-y (12)
Then from €q. (3), one could obtain
k kil &k
S (13)

Since our goal is to reduce the tracking error, ¢k, as the task is being repeated, we aim at finding 2
change in our Input which wou

1d lead 10 tracki ; iti k+1=(), For that
input change, eq (13) Bt zero tracking error at the next repetition, ¢

Pv =-¢ (14)
Equation (14) su

available, an app Sgests that the change of input, vk, can be deduced from P and e¥. Since P is 10t

roximation to P at the kth

. repetition, Pk, has to be used. Hence
K k
P V =-g (]5)
To obtain vk
I ;)thkhfzgrﬁ-f’enrose pseudo-inverse can be used to minimize the following norm,
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11.‘1 "y
pamely . p" *c"
vy m= (16)

Hence, the control action at the (k+1)st repetition, uk+! can be caleyl

: ) ated accordi
kbl uk 4 vk, In the following, the method for finding Pk rding 1o eq. (12),

will be described.

At repetition k, denote the difference between the actu

 den al system parameters P and the approximation
pk by the matnx D~

k k
p=P +D (17)

Substituting €q. (17) into (13) and rearranging,

k k k+1 k _k k
D v =¢ -C-PV (18)

Since D¥ is a.qp by mp matrix and the other terms in eq. (18) are vectors, one can not directly solve
the complete D¥ from eq. (18).

A "solution" that would solve DK along a direction defined by zX is,
xT
Dk__ gck-v—l -ck-Pka)z
e kT x (19)
z v

while zK are chosen in the following way[18]:

- Ifk2n-1 then z¥ is chosen orthogonal to the previous n-1 control steps vkm-1, .., | vk,
- Ifk<n-1 then z* is chosen orthogonal to the available k steps, V0, ..., vkl where n <
mp is the maximum number of linearly independent v's which could be found.

A few orthogonalization methods are available in the literature which may be used for the actual
evaluation of the z vectors. These include the well-known Gram-Schmidt orthogonalization
process[14] and a more advanced technique due to Fletcher [19] in which the number of vectors in
the set may be changed.

Together with an orthogonalization method, eqs. (16), (17), and (19) form a learning control
algorithm,

vamBBL o (20)
Pl =pk 4 pk
-pk, (e¥*! - ek - Pk k) ZKT (21)

ZKTyk

Proof of Convergence

The set of 2k picked by an orthogonalization method for eq. (21) has the property that 2kTyi =0 for O
<k-j<n-1. Consequently

Dkvi=0 0<k-j<n-1 (22)
Therefore, !

k+1 j i H k i
P vJ=[P’+l+DJ+1+...+D 1V

_poitlj (23)
=Py 0<k-j<n-1
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maximum number of linearly independent v's, yn

- H . as to be .
Since n <mp is the \ it control s alin
N i taearlv spendent control steps ear )
of all previous n linearly indepent R | Combmatm

Wi = gV A gV 1= Y, oV
0 o
Premultiply eq. (24) by P, one has
nl

n n n j
SEDILLE (25)

=0
Let kin (23) be n-1,

pnvi = Pitl vi =(Pi + Diyvi 0<j<n-1

(26)
Substituting (18) into (26),
prvi = eitl - el on
According to (13), the right hand side of (27) must be equal to Pvi. Hence
PUvi=Pvi 08)

Substituting (28) into (25),
n1 .
n n j
Pv=P z oV (29)
0
According to (24), the summation in the right hand side of (29) is equal to v". Hence
prvn=Pv0 (30)
Substituting (13) into (30),

pryi=pyn
= cn+1 —eh

@31
If vn satisfies (15), then,
en+1 L 32)
which means that e™! must be zero. However, if v only satisfies (15) in a least square sensc, then,
cn+1 PV e (33)

has minimum norm.

.. m
If n (the rank of PO-P) is equal to mp, then after mp+1 repetitions of the task, a minimum 0o

| ' ifPOisa
tracking error will be achieved. (mp+1) is the maximum number before convergence. But if
good guess, it can converge faster.

V. Simulation and Results

: . . -
The learing control algorithm based on the generalized secant method was tested 00 2 Ling ¢ second

i i : . m. The &€V
nonlinear dynamical systems. The first system is a linear mass-spring-dashpot syst;end Tum with

system is a non-linear mass-spring-dashpot system and the third system 13 a
damping.

5.1, Governing Equations of Simulated Systems (o llowin

A . : : py the
System 1 is a linear Mass-Spring-Dashpot system. This system 15 described bY
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- On
I

differential equation
mo+eatko=T (34)
here m, ¢, k are L.O kg, 1O Ns/m, 1,0 N/m,
whe v Gy
system 2 is & nonlinear Mass-Spring-D
Sy

: i as syste . € Sim ated System ly 1amj is pi
h'c (0"()\\Villg diﬂelCllll.ll C(ll‘ldll()n: y ( e " o
t

en by

2 .
ma+c(l+a )a+(k|al)a=T

here m, ¢, k are the same as those of system 1.
where 11, &

System 3 is a one-degree-of-freedom

pendulum of masg m, len
damping ¢. The dynamics of the simula

gth I, angle from vertical a, and
ted pendulum obeyed the following differential €quation;

(36)

m126.+cd+mglsina=T
where m, [, ¢ are 1.0 kg, 0.1 m, 1.0 Ns/m.

The desired trajectory is given in Fig. 1. As

1 shown in Fig. 1, the desired tra
two radians so that the system nonlinearity of

jectory swin g through
system 3 can not be neglected.
5.3 Simulation Results

System 1 was first simulated to test the generalized Secant controller. The results of this simul
are given in Fig. 2 which plots the sum of Squares of the errors v

ersus the repetition number,
first repetition was done usin g a self-tuning regulator with forgetting

the self tuning regulator is givenin [7]). The sum of squares of ¢

to 1.08 and did not go to zero. The flat
the direction of zy, in which the P matri

ation
The
factor 1 (a complete theory of

ITOrs in this simulation converges
part of the curve is the result

of control steps orthogonal to
X is to be updated.

Barnes [18] proposes a practical stability criterion which translates to imposing a small positive
lower limit to the inner product of the direction in which the p Matrix is to be updated and the control
step taken. Namely, a control step is checke

d before it is actually applied and if it does not satisfy
the inequality (37) it will not be applied.

T

lzkvkl
TT—— >p O<p<l1
llz.kllE lIkaIE

This ensures the control step, vy, is not going to be applied in a direction orthogonal to the direction
of z, in which the P ma

trix is going to be updated. If a contro] step is rejected for not meeting (37),
€N a new step vy should be found. The best choice for the new ste

P is a step in the same direction
as the P update direction, z, then the inequality of (37) is always satisfied.

(37

! ed system from being driven too far away from the nominal
desir trajectory. We find that a step si
usually works well.

The i“m)duction of the checking of contro] steps worked well in reducing the tracking erforstztzer:;z
for system 1 (see Fig. 3). We then applied the controller to a set of more practical d)";]a““l‘;ng’mz od
volving nonlinear dynamics such as those described in egs. (35) and (36) Whlcg vary in the s
can be approximateq by linear models Wwith coefficients that vary with time step, "mf Va?r’s for system
J1anner eac I€petition, Figures 4 and 5 show the plots of the sums of squires ot e 4
nd system 3, 1y, both of these simulations the P ineq. (37) was set to 104,
- savie 4 § repetitions
{;’h‘.‘ppl,‘canon 1o the system 1 ang system 2, zero tracking error was achiey ed .if’u:l;h\c r;gﬁdlulum
i less than the'¢ provided by the theory (10 repetitions). Similarly, less than the
il j after only 9 repetitions which is again one repetition less

= eiling
ac ~T0 trajectory ery
Ceiling Provideq b)JJ the [});cor;r
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The flat part of th

¢ of the newW co

amplitud ’
cignificant change ©

the rejection ©
therefore & con
CITOTS.

It should be noted th

system while sin
practical evidence on

¢ curves 10

\ 5 are caused by rejecting of contro]
atrol Steps replacing the rejected ones has to be kept VCr)?g,sm Sinie
iate from One repetition 10 the m):xt repetition. Aftcr afew rcpé[;:‘.‘”' there i‘;thc
ol steps, updates dm}c to the P matrix hr.mg. it closer to the llopsl “lin
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the robustness of this Jearning controller. 100S Provida

VL CONCLUSION
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e lack of knowledge of the derivative

which might be
among them. Th

range of the algorithms.

system in the repetiti
a direct attempt to
that the quadratic
Knowledge of P i

minimizing the qua

generalized secant me
coefficients in P than there are in the quadratic cost function allows fast converg
ence

fewer unknown

sible numerical unconstrained optimizatio

overview of the pos
N methods

trol laws, and has identified the most applicap
s of the performance criterion CO“SUailncsoRc
the

It was shown that faster convergence can be obtained by identify;
ying the

on domain and minimizing based on the current model, than can be obtaineg
ained by

minimize the quadratic function of the error. The advantage comes from th
the fact

function is not a gener

is sufficient to determine
dratic function do not take advantage of this special relationship whereas th
as the

al one, but one in which the coeffici
all the coefficients of this function. Tg;lin;?g%rgtﬁaitgd'
or

thod constructs the coefficients from the knowledge of P. The fact that the
Ie are

of the generalized secant method.

Simulation results show that the learni
practical modifications such as the reje
learning controller was shown to be very sta

ng controller based on secant method works well with som
ction of noninformative control steps.The generalized secani
ble and robust in a practical sense when applied to the

control of truly nonlinear systems.
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