
Sensors, Controls, and Quality Issues 
in Manufacturing 

ASME 1991 

LEARNING CONTROL BASED ON GENER ALIZED SECANT 
METHOD AND OTHER NUMERICAL opPTii ZATION METHODS 

Homayoon S. M. Beigi 
International Business Machines 

Thomas J. Watson Research Center 
Yorktown Heights, New York 

C. James Li and R. w, Longman 
Department of Mechanical En 

Columbia University 
New York, New York 

gineering 

ABSTRACT 

to perform repeatedly, they will usually Tepeat the » except for certain random noise effects. The field of learning 
tformance at a given task with 
have concentrated on use of 

I. INTRODUCTION 

A large Percentage of the practical applications of control theory involve systems which are Tepeatedly asked to perform the same task. Examples include tracking problems for robots on assembly lines, as well as a large number of manufacturing applications. Standard controller design methods produce systems that di i j 

To date, the learning control literature has been based on either analogues of integral control in the Tepetition domain [1-4], or more recently adaptive control ideas have been converted to apply to i caming control problem in (5-7]. This paper is devoted to a preliminary investigation of a thir Sption -- the use of numerical Optimization techniques as a method of accomplishing learning in Tepetitive tasks, 

The a 
th 7 

. proach bears a certain 
the 

philosophical similarity to a few optimal control investigations that use Teal world Tather than ac 
0 ‘Omputer model to evaluate each iteration in the attempt to converge on Pumal control. Such an approach can avoid the sometimes lengthy process of obtaining a goo 
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art. Reference [3] develops such an idea for 
tion problem can sti 1 

- 

in continuous systems. 
mining 

optimizal 
re the OF luc of the error 

model befo © ithe absolute Va 

the integral di 
i | problem for discrete systems, a syste i 

. the learning contro 
? stem of line 

Here, We eons he change in the state of the system to the change in the control ac algebraic 

g From this set of linear equations which gives the transition he one 
: tw equations relat

 

repetition of the te ptimization function which is quadratic in the error. We o." . We sty 

any two CEA ization methods to determine how to adjust the control history from one repetig 

eatin ander to decrease this quadratic function of the error as the repetitions of the task proven? 

Furthermore, we utilize a generalized sera’ scan 7 : cin sy ha of linear algebraic equatio 

directly for the appropriate con an h parame ee ene ae will minimize the tracking 

error of the controlled dynamic system, wit oY any rr Oo Know ge of the system paramete 

except the order of the system. Iris shown analytically that the generalized secant method requi TS 

ns to converge among all the methods given in this paper Henes 
; 2, 

the least number of repetitio 
TEC 

simulations were conducted to study practical issues of this controller. 

II. PROBLEM FORMULATION 

Consider a general discrete-time linear time-varying Or time-invariant system, 

x (ttl) = A(t) xX) + B(t) u(t) + wt) 
(la) 

yenecenx ee) t=0,12e0pl  k=0,1,2, -. (1b) 

sional, the control, 1, is m-dimensional, the output,y, is q-dimensional 

the p-step repetitive operation, and k is the repetition number. For 

simplicity, the dimension n of the system is assumed known, but generalization to just knowing an 

upper bound on n is easily considered. Also, A, B, C, and wk are assumed unknown -- otherwise 

one could determine in advance what control to use to minimize tracking error, and there would be 

no need for learning contol. In the learning control problem (as contrasted with the repetitive control 

problem in [2]) the system is assumed to always start from the same initial state in each repetition of 

ix A includes any state or output feedback control present in the system and the 

the task. Matri 

symbol uk is reserved for the signal added to the control for learning purposes. A time varying 

e many applications, such as in robotics, involve nonlinear dynamic 

model is considered becaus 

systems which when linearized produce linear models with coefficients that vary with time, and vary 

in the same manner each repetition. In such repetitive operations it is often the Case that there will be 

e task, and learning can be made to also 

disturbances w*(t) that repeat with each repetition of th 

correct for this source of errors in a natural way. We will limit ourselves to repetitive w*(t). 

Therefore the superscript k will be dropped. One of the purposes of the feedback control is to handle 

any non-repetitive disturbances, and these will be ignored for purposes of designing the learning 

control (some analysis of these random noise effects in learning control can be found in [4]). 

where the state, x, is n-dimen 

(q2m), t is the time step in 

The solution to (1) for the p-steps of the repetitive process can be written as 

l t U 

x* (te) = ([]so )F@+> (([Jao)@o kG+ewO) @) 

J rytl j-0 

where the product symbol is taken to give the identity matrix if the lower limit is larger than a upper 

(1) - 220 for 
limit. Let p be the total number of time steps. Defining a difference operator 5xz() = zk 

any variable z, and using the fact that xk(0) and w(t) are repetitive, one can write, 

k y=y +P3u 
(3) 

where, 

yk = [ykT(1) ykT(2) ces ykT(p)]T 

uk = [ukT(Q) ukT(1) ... ukT(p-1)]T 
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C(1) BO) 0 eee 0 

C(2)A(1)BO) Cc 
” (2) Ba) 0 

C(p)A(P-IA@-2)..- AQ)BO)  --. Ae C(p) BY 
. P) B(p-1) 

The objective is to find a change i 

minimize the quadratic error function the control at each repetition k that ill 
will, as k progresses 

k T 

£(8,u)=(y'-¥p) (Y-¥p) (4) 

where Yp is the desired ou i 

in aiecrete systems Aa ae geal a for the p-step process. In previo 

smrention had to be directed to the probl in the extensions of these pa us work on learning control 

attention Trajectory for the system t em of ensuring that the special desi, for journal publicatio 

knowledge of an upper bound on the . perform. For example, one esired trajectory was in Foor 

Then specifying the desired measured ystem dimension n, and assumi method involved assumin 

control theory to be a feasible specifi output variable history every n ng the system is controllable 

if one is satisfied with minimizing (4) rather ee present approach these covaitions car by modem 

insisting that (4) be driven to sal can be relaxed 

Substitute (3) into (4), 

_,.0 T 

£(B,u)=(y"+ P&u- yp) (y+ PBu-yp) 
T T T 

=5u (PP T 0 
yu (PP)Bu+28u (P (y"-yp)]#(y-¥p) (3"-yp) ° 

Note that th i ie gradient of this objective function and the Hessian matrix of of second partials are. 

of op’ ps5 To 
d(&u) kut2P (y -¥p) 6 

2 

= 2 =2p) 
(uy or 

1 

Tt is now i possible to characteri i 
. . 2 imi i 

contol cticcdve, We wish 10 the nonlinear optimization problem represented by our learning 

1. minimi. i ich i a ernieon mies ee to be quadratic in the control change variable bu 

c unctio i i ; system matrices A, B, ieee SE OE. available, because we do not know the 

e second derivative is similarly unavailable. , 

erview and assessments of the possible 
Havi i aving characterized the problem, we present an ov 

| optimizing method. approach i es to the learning control problem using numerical 

Ill. LEAR NING CONTROL BY NUMERICAL OPTIMIZATION METHODS 

3.1 Quasi-Newton Methods 

asi-newton based methods have been 

nections. Among these methods are the 

he Broyden family of methods as well 

he use of the iterative process to 

ond derivative is needed. If 

Over th 
geatrated {2st couple of decades various finely tuned qu 

rank 1 Broyden 1 minimization of unconstrained nonlinear fu 

TSS ee OEE EES a other members of 

approximate the ii, \n important characteristic of these methods is t 

essian matrix so that nc explicit expression for the sec 
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aN 

we could evaluate the first derivative df/d(6,u), then the BFGS method would Cony, 
optimal 5,u in approximately mp repetitions. One might note that if one actually knows ne 10 the 

of (6), then one could equate it to zero and solve for iu and obtain the optimal uj © dt/A(G,y) 
something which could be classified as a Newton method in numerical Optimization, None Step .. 

. do not know df/d(,u), one can consider the use of Quasi-New 
sanieoseatizn of the gradient obtained by a finite difference method. In order 1 etods with 
differences for all of the mp elements of the gradient vector it would Tequire approx; these 
repetitions of the task to make one evaluation of the gradient vector. The total number of rene required for convergence would exceed (mp)*. This makes such methods a POOr choice, Petitions 

control. Methods that do not require the use of a gradient in Picking the search directio Wn earn for. Note that the same difficulty eliminates the use of steepest descent and conjugat are called 
methods. 

© gradient 

3.2 A Direct Search Method 

A method which does not require knowledge of gradients, is the direct search method of o as expressed by Wood [9] and later by Hooke and Jeeves (10). The direct search me 
takes advantage of the quadratic nature of the objective function, is as follows: 

Ptimization 
thod, which 

1. Pick mp orthogonal directions in the 5,u space. For each of thes 
perform the line search as in the next steps. 

2. Take a step along the chosen direction in 6,u space, and apply the resulting control inthe 
next repetition. Evaluate f from the data of this repetition. 

3. If f decreased pick another step in the same direction, if it increased Pick a step in the opposite direction, and apply to the system. 
4. Since the quadratic objective function surface in the plane of the chosen direction is a parabola, the data from 2 and 3 determines this parabola, and can be used to 

find the minimizing 5,u for this direction. This completes the line search. 
5. Return to 2 with the next direction. 

¢ directions in Succession 

This algorithm will improve the tracking every three repetitions, provided there is no noise in the measurements. There is no guarantee for a finite convergence unless the directions of search are mutually conjugate about the Hessian matrix of the quadratic objective function. Care must be taken to avoid large disturbances to the repetitive process during the line search. 

3.3 Conjugate Direction Methods 

If the unidimensional search of the last section were used along mp mutually conjugate directions, then in the absence of noise, the system would Converge after minimizing the quadratic objective 
function in all these directions. There are a few conjugate direction methods available in the literature 
{11-13]. These methods start with a set of mp orthononmal directions which could be coincident with 
the columns of an mpxmp identity matrix. Then, by doing unidimensional searches in these 
directions, a new set of directions is generated. 

Rosenbrock's [11] method provides a direction coincident with one of the eigenvectors of 7 Hessian (H) matrix. Eigenvectors of H are mutually conjugate and point in the direction 0 " 
minimum of the quadratic objective function. One such eigenvector is reached ee unidimensional searches along the orthonormal directions. The rest of the mp-1 directions are vide by using the Gram-Schmidt [14] onthogonalization procedure. This cycle is then repeated a ore 
another eigenvector of H. There is no guarantee that the eigenvectors are not repeated. Therelore, there is no general finite convergence proof available. 

Rosenbrock's method might converge to a non-minimum point in which case the eth down. To avoid or delay the failure of the minimization procedure, the method due | Another 
Swann, and Campey [12] (DSC) uses a renumbering system for the directions of searcl rate to the method due to Powell [13] provides a direction set with one of the directions Cen esrock an Complementary mp-I directions. This set is obtained after a cycle similar to that of Ros after every DSC. However, Powell's method does not require any orthogonalization procedure cycle and it never breaks down as Rosenbrock and DSC methods do. 
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o 

ve methods guarantees a finite convergence since 
None of the vearly dependent on directions obtained in previou 
might be ae linearly independent, then the function minimiz get a This applies to Powell's second method. 

titions. rept’ ss Identification Test Method 

346 

the main directi 
Ous Cycles. Ho 

ation will converg 

On after each cycle wever, if the set of € within mp(2mp+1) 

ys possible to identify a system from impulse response tests. In this secti ; ; ; On we study the Iris alwa , and then in the next section we will study how to accomplish impro : use oF sutton if data is taken for a sequence of repetitions (j=0,1,2,....N) then e4. (3) given with eac [ayy Sx) ~- by] =P [5x2 Sy"... 84] (8) 
Nis sufficiently large, this can be solved for P by use of an inverse or Once 
each 5,u a different column of the identity matrix, which is the discrete equivalent of an makes : case test, then one can eliminate the need for inverting a matrix. In other Cases, one can im pe ae of the lower block triangular nature of P to efficiently compute the inverse. The noise a san be important in deciding the best approach. Once P is determined, then solving (6) gives 

Pseudo-inverse. If one 

51 u = Pt (y® - yp) (9) 
where the superscript t indicates the Moore-Penrose pseudoinverse. 

that the desired trajectory is feasible for system 1, and the desired trajectory exactly 
Sr ecifes all the freedom in the system, then the solution to (9) is the same as solving (3) for v; to 
obtain v; = P-! (yi - yp). This approach requires mp+1 steps to optimize the tracking in the no noise j 
case. 

A Modification to Obtain Improvement Each Repetition: In practice one usually has a model of 
, call it P™, when one starts the Tepetitive control, although one may not be very confident 

sour ti model. As the data from each repetition arrives one could modify the model to match the 
data, using the smallest possible change in the elements in the least squares sense. At step j, one 
would choose AP to satisfy 

[Sy 8ay.. dy] =[p"+aP] [50 8,10... 5,0] 

or 

T 

ap= { [Sy Sry. dry] - P™ [Su S510... 810] } [Gu 5.10.80] a0) 
i that this where the superscript ¢ indicates the Moore-Penrose pseudoinverse. One can show 

pseudoinverse will minimize t(APTAP), i.e. the sum of the squares of the changes of all elements of AP. 

The method becomes: 

1. Pick a direction for 6,u and make the first repetition to obtain the 8,y, 5,u pair. 
2. Solve for AP from (10). sion of 
3. Obtain § j+1U from (9) substituting P™ + AP for P. The singular value decomposition o 

: ine if 5:.,u is linearl (5; ... 8,u) involved in the pseudo-inverse will determine i a Nanay this step. independent. In the event that it is not, choose a linearly independe 
4. Repeat steps 2 and 3 until convergence is obtained. 

This approach takes full advantage of a priori information a 
System behavior with every repetition, handles noise in a natural way feasible for the system to 
andles in a logical manner specified desired trajectories that are not f¢ titions or less. The Perform, and in the no noise case produces convergence in mp+1 oes fundamentally related effectiveness of the method by comparison to the direction set method above ther the linear and the '0 the fact that the quadratic cost (5) is not a general quadratic function, but 

i the control he system, improves t bout t y hat smooths its influence, 
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. this extra information h : 
; T and PTP are related, and i a 4S been j ; sx coefficients P? and FP tent; : Neo quadratic Uribe Rather than trying to identify the pape ue Surface of f as in the direct ants Se year relation (3) from which the quadratic is derived is identified, wit On s method, the lines : 4 att hod with this same Prope iti cal optimization met od 

‘ngs in repetitions. A numenc savings in repeul 

1 
4 resuly 

is 
Sultin y is Presenteq Int ' next section. 

h 

identification of the system model in the repetition domain « .. involves identification of the : m m« | sin, wh 
The above Sales eral can be called learning identification. Various approach €S to identin ch by 

ie palit derail are presented in (7,15,16], for both time-varying and time-invariant nes n in the k 7 

i ae Ia accelerate the learning control Convergence by ye; ystem is time-invariant one can acce : gc a 
Lehi Lae - elements of P to compute the time domain description A,B, C, from which cae = 
ora the elements of P before enough data has been taken to obtain all elements directly, The 
algorithm is as follows: 

1. While applying the above algorithm, use the lower block triangular nature of Pto determing 
successively CB, CAB, CA?B, etc. 

2. Form the Hankel matrix of these Markov parameters for the Appropriate dimensio n, if one iti large enough to have en d CA2n.1 
knows the order n of the system, for any repetition number larg noug generated CA2-1p 
Cie eons allow more smoothing. Ifn is not known, monitor the rank of the Hankel matrix with repetitions, 

3. Use the Eigensystem Realization Algorithm (see for example [17], or use the Ho Kalman algorithm) to obtain A, B, and C. Note that one does not need to identify w(t) of the time domain model. 

4. Use A, B, and C to construct the full P matrix. 

5. Find the optimizing control using this in (9). 

Note that if the full state is measured, then the Eigensystem Realization Algorithm can be bypassed, by simply identifying A and B using a pseudoinverse solution of the sequence of eq. (1) for succeeding steps, after eliminating w(t) through differencing. 

IV. THE GENERALIZED SECANT METHOD 

Define the error, ek, as the difference between the output y* and the desired trajectory yp, 
kook ck=yt-y, 

(1) 
Define the change of input between two consecutive Tepetitions as 

vey! -u 

(12) 

Then from eq. (3), one could obtain 
kok 

Pv =e = e 
(13) Since Our goal is to reduce the trackin § €rror, ex, as the task is being repeated, we aim at finding a 

change in our input which would lead to zero tracking error at the next repetition, eX+!=0. For that 
input change, eq. (13) becomes 

k 
7 k 

Py =-¢ 

Equation (14) su 
available, an app: 

(14) 
Bgests that the change of input, vk, . is not — » can be deduced from P and ek, Since P is no! FOximation to P at the kth Tepetition, Pk, has to be used. Hence kk k 

Py =-e 
(15) 

To obtain vk . . ™ ‘t nine oor" Penrose Pseudo-inverse can be used to minimize the following norm, e 
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rely. namely : a a 

a (16) 

Hence, the control action at the (k+1)st repetition, uk+1, can be ca 
: Iculated i 

yXtl= uk + vk. In the following, the method for finding Pk according to eq, (12), will be described. 

At repetition k, denote the difference between the actu dent 
al system parameters P and the approximation 

pk by the matrix D*. 
k ok 

p=P +D 

on 

Substituting eq. (17) into (13) and rearranging, 

k k -ktH k Jk k 

oe npatiny 

(18) 

since Dk is agp by mp matrix and the other terms in eq. (18) are vectors, one can not directly solve 
the complete D¥ from eq. (18). 

A “solution” that would solve Dk along a direction defined by zk is, 

k+l ok Jk k. kT 
k_(e -e -P v )z 

DS kT k& (19) 
Zz sYV 

while z* are chosen in the following way[18]: 

- Ifk2n-1 then zk is chosen orthogonal to the previous n-1 control steps vk-™!, ... , vE-1, 
- Ifk<n-1 then z* is chosen orthogonal to the available k steps, v®, ... , v«!, where n $ 

mp is the maximum number of linearly independent v's which could be found. 

A few orthogonalization methods are available in the literature which may be used for the actual 
evaluation of the z vectors. These include the well-known Gram-Schmidt orthogonalization 
process[14] and a more advanced technique due to Fletcher [19] in which the number of vectors in 

the set may be changed. 

Together with an orthogonalization method, eqs. (16), (17), and (19) form a learning control 
algorithm, 

vate (20) 

pel = p* 4 pk 
=p*s (et ~ ek - pk yk) kT (21) 
~ zkT yk 

Proof of Convergence 

The set of 2 picked by an orthogonalization method for eq. (21) has the property that 2kTyj = 0 for 0 
<k-j $n-1. Consequently 

Dkyi =0 0<kj<n-l (22) 
Therefore, 

kel jj kj 
Pv=a(PT apy 4D yv 

_ pth i (23) 

=P O<kjsn-l 
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le 

AN 
% t 

- 
4 

um number of linearly independent v's, vj, 
i is the maxim 

ite head 

Since n $ mp 3S the mi . DE ates 
+ ne 

of all previous 0 linearly independe Ms | 
a 

Y 

n 

yo= CrgvO4 tn VO » ov) 
j-0 

(04) 

Premultiply eq. (24) by P®, one has 

nl . 

non nj 

reagan 
(25) 

5-0 

Let k in (23) be n-1, 

p yi = pit! vi =(Pi + Divi O0<j<n-l (26) 

Substituting (18) into (26), 

Pr yi = eitl- el 
027) 

According to (13), the right hand side of (27) must be equal to Pvj. Hence 

pr yj = Pv) 
28) 

Substituting (28) into (25), 

nl . 

Pivi=P d av (29) 
F 

According to (24), the summation in the right hand side of (29) is equal to v" . Hence 

p»yn=PyrA (30) 

Substituting (13) into (30), 

pryn=pyn 
= etl a en (31) 

If v" satisfies (15), then, 

em 7 Mh _. = (32) 

which means that e"+! must be zero. However, if v" only satisfies (15) in a least square sense, then, 

om =pviet (33) 

has minimum norm. 
-oe mm 

If n (the rank of P9-P) is equal to mp, then after mp+1 repetitions of the task, a minimum "0 
. . . 

i po is . tracking error will be achieved. (mp+1) is the maximum number before convergence. But if 

good guess, it can converge faster. 

VY. Simulation and Results 

, . . inear and Wwe 
The learning control algorithm based on the generalized secant method was tested ks e second 
nonlinear dynamical systems. The first system is a linear mass-spring-dashpot SY pendulum with 
system is a non-linear mass-spring-dashpot system and the third system 1s 4 

damping. 

5.1, Governing Equations of Simulated Systems following 

a ‘ ibed by the 
System 1 is a linear Mass-Spring-Dashpot system. This system 1s described Dy 
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differential equ
ation 

matea+ka=T
 

(34) here m, ¢, kare 1.0 kg, 1.0 Ns/m, 1.0 N/m, where Tl 

  

: inear Mass-Spring-Dashpot System. The sj I 
: 

stem 2 is a nonlinea ; 
. Simulated syste 7 is gi 

ysrollowing differential equation: 
ystem dynamics is 8iven by 

t 
2.. 

mat¢+c(l+a Ja+(klal)a=T 

(35) here m, c, k are the same as those of System 1. w oe 

System 3 is a one-degree-of-freedom pendulum of m ys ass m, length 1 , angle from vertical a, and 
damping c. The dynamics of the simulated pendulum obeyed the f ollowing differential equation: 

(36) 
ml a@+catmglsina=T 

where m, /, c are 1.0 kg, 0.1 m, 1.0 Ns/m. 

The desired trajectory is given in Fig. 1. As shown in Fig. 1, the desired tra two radians so that the system nonlinearity of jectory Swing through System 3 can not be neglected. 
5.3 Simulation Results 

Seneralized secant controller. The results of this simulation 
are given in Fig. 2 which plots the sum of squares of the errors versus the repetition number, The 
first repetition was done using a self-tuning regulator with forgetting factor 1 (a complete theory of 
the self tuning regulator is 81ven in [7]). The sum of Squares of errors in this simulation converges 
to 1.08 and did not go to zero. The flat part of the curve is the result of control Steps orthogonal to 
the direction of zy, in which the P matrix is to be updated, 

i 
actually applied and if it does not satisfy 

the inequality (37) it will not be applied. 

| a I Vv 
——* Vel >p O0<p<1 

(37) 
Wale Wl Vy lle 

This ensures the control Step, Vk, is not going to be applied ina direction ortho of zk, in which the P matrix is going to be updated. If a control step Is rejected for not meeting (37) 
€n a new step vy should be found. The best choi as the P update direction, z,, then the inequality of (37) is always satisfied. 

enough to keep the Stat olled system from being driven too far away from the nominal 
desired trajectory. We find that a step Usually works well. 

The introduction of the checki 1 in reducing the tracking error to zero 
ecking of control steps worked well in reducing { pole 

for System 1 (see Fig. 3). We then applied the Cantller to a set of more practical dynamic ee Ovolving nonlinear dynamics such as those described in eqs. (35) and (36) which when 
tine approximated by lin er ) anc in the same 

far models with coefficients that vary with time step, and vary in th 
€ach repetition. Figures 4 and 5 show the plots of the sums of squares of errors for system 

4 
2and System 3. In both of these simulations the p in eq. (37) was set to 10-4. In applicati ich ic Toon £0 the system 1 an Which is legs than the ceiling pr : Z€TO trajectory err Ceiling Provided by the theory. ° 

: / 8 repetitions d system 2, zero tracking error was achieved het 7eadilnma ovided by the theory (10 repetitions). Similarly, sles thant fter only 9 repetitions which is again one repetition less 
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ae 

are caused by rejecting of control st Ste rigs. 3 through 5 are 
rejected ones has to be kept very sm p Sings ; 

Small, there :..° the curves 1) I 
The flat part of t 1 steps replacing the 

A enew control s ps ves 4 saptiti 

amplitude aes of state from one repetition to the next repetition, After a few repetitions + -° IS no 

significant ¢ ange OF S updates done to the P matrix bring it closer to the ulti NVOlving 
Imate Pp 

" eps 
n of control stepss : lly lead Sonifies : 

ron it usua eads to a significant 
d fy ¢ y g c Improvement in 

the rejeco n calculate 
an 

tracking 

therefore a ¢ 
errors. 

ontrol actio 

theory in this paper was derived for control of a time-vary; 

uld be noted that the 

e-varyin 

Tr show while simulations were done on highly nonlinear systems. These simulanee Wy%amic 

systen 
of this learning controller. 

NS provide 

practical evidence on the robustness 

VI. CONCLUSION 

is paper has given an overview of the possible numerical unconstrained optimizati 

waiek Right be used to generate learning control laws, and has identified the most app
hennads 

among them. The lack of knowledge of the derivatives of the performance criterion constraj € one 

range of the algorithms. It was shown that faster convergence can be obtained by identif ans the 

stem in the repetition domain and minimizing based on the current model, than can be oben the 

a direct attempt to minimize the quadratic function of the error. The advantage comes fro ained b 

that the quadratic function is not a general one, but one in which the coefficients tre the fact 

Knowledge of P is sufficient to determine all the coefficients of this function. The al ore 

do not take advantage of this special relationship ovhe ms for 

method constructs the coefficients from the knowledge of P. The fact that there me 
€ minimizing the quadratic function 

generalized secant in the quadratic cost function allows fast convergence 
fewer unknown coefficients in P than there are 

of the generalized secant method. 

at the learning controller based on secant method works well with some 

on of noninformative control steps. The generalized secant 

stable and robust in a practical sense when applied to the 
Simulation results show th 

practical modifications such as the rejecti 

learning controller was shown to be very 

control of truly nonlinear systems. 
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